

First NASA/NCI Workshop

Sensors for Bio-Molecular Signatures

Workshop Sessions:

- Recognition of Bio-Molecular Signatures
- Micro/Nano Systems for Sensing
- Molecular Imaging
- Signal Amplification
- Information and Data Processing
 - Bio-informatics

Workshop Results:

- 150 attendees from all around the nation.
- Enthusiasm for NASA/NCI partnership on joint technology development and systems engineering.
- Follow-on workshop next year.

Biologically Inspired Systems

Vision

"Look to biology for true intelligence"

"Smart biological sensors"

"Self-repair, self-healing intelligent systems"

"... cells are the future micro-devices"

Mr. Dan Goldin, First NASA/NCI Workshop on Bio Molecular Signatures, June 2-4 1999.

Goals

Develop merging of hardware and software technologies

Develop nano-scale sensors with sensitivities at the molecular level

Biologically-based or biologically inspired evolvable systems

Bio-chips that combine the best of semiconductor and bio technology

Common Vision for the Future

- In the New Millennium the confluence of scientific discoveries in:
 - Biology
 - Chemistry
 - Physics
 - Computer Science
 - Systems Engineering

will result in a wealth of technological breakthroughs that will dramatically change/improve society and enable:

- ... revolutionary systems for space exploration, science and engineering.
- ... revolutionary approaches to the detection, diagnosis and management of cancer.

Common Technology Development

Approach

Problems

NASA

Common Technology Area

- Molecular Recognition Sensors
- Molecular Imaging
- Micro Nano Systems
- **Bio Informatics**
- Integrated Systems Engineering

Joint Program Elements

Web-based Bio Technology Forum

Technologies (Research and Development) Pilot Projects (Science & Engineering) National Testbed (Facilities, Infrastructure)

Molecular Recognition Sensors

Bio-electronics

NASA

Evolvable, flexible spacecraft systems

Biogenic molecule detection for the search for life beyond Earth

Bio-Astronautics: Human health, capability & environmental monitoring

Clinical diagnostics

Comprehensive molecular analysis

Cell & molecular biology research

Protein purification & characterization

Intervention discovery and delivery

JPL/CISM/Bio-Comp/NCI/BioTechShort..ppt

NCI

Silicon-based immunological probes

Murine neurons on silicon grid

Biomimetics

Membrane-mimetic ion channel sensors

enry Sun. JPI

Leon Alkalai 6/30/99

Bio-Modification

8

Molecular Imaging

NASA

Fossil microstructures-imaging & composition

Ices—grains & chemistry

Minerals—chemistry & spatial heterogeneity

Molecular recognition

Genetics

Drug discovery

Carbon-nanotube-based chemical force microscopy

Au (111) surface

Near-field scanning optical microscope

STM image of DNA helix

NIST

Micro/Nano Integrated Systems

NASA

Biogenic molecule detection for the search for life beyond Earth

Remote resource-efficient systems

Miniaturized biosensor "chips"

Array biosensors for multi analytes

Biological pathway elucidation & target validation

Small molecule/protein interactions

Ligand fishing & drug discovery

Intervention delivery

NCI

R. Mathies, U.C. Berkeley

Complex micro fluidics for integrated functionality

Precision microfabrication

Leon Alkalai 6/30/99

Purdue

Bio - Informatics

Gene Regulation Computational Models

The varying influence acaias factor inhibitory switch

Source: Science, Volume 279, Number 5358 Issue of 20 Mar 1998, pp. 1896 - 1902

Model-Based Reasoning For Autonomous Spacecraft

High Resolution Imaging: Data Intensive Computing and Visualization

JPL/CISM/Bio-Comp/NCI/BioTechShort..ppt

Bio-Informatics Computing Intersections

NASA	Computing	NCI
Earth Observation		Cell Analysis for discovery
	Imaging	
Planetary Probes		Diagnostic Imaging
Simulation	Visualization	3D Image presentation
Earth Sciences		Molecular Analysis Data Sets
Earth Sciences	lmage	Gene Expression
Astrophysics	Interpretation	Molecular Imaging
Earth Observation	Machine Leaming	Molecular Analysis Data Sets
On-board Science	& Discovery	Bioinformatics
Robotics		Diagnostic Image Analysis
Autonomy	Model-Based	Gene regulation models
Self-Analysis	Reasoning	Smart Sensors
Intelligent Design	Shared Computing	Clinical Investigation
Earth Sciences	Models	Bioinformatics
Intelligent Design	Evolutionary	Drug Discovery
Simulation	Computing	Bioinformatics
Autonomy	Validation	Molecular Pathway Models
Operations	& Verification	Cinical Data Analysis
Knowledge Discover	Data Integration	Synthesis of mixed data sets
	& interpretation	Integration of discovery
		preclinical and clinical data

Data Synthesis and Visualization

Image Analysis

Sir-C Image of Western Pacific Rain Storm

Cell Imaging

Source: Science, Volume 283, Number 5410 Issue of 26 Mar 1999, pp. 2085 - 2089

End to End System Integration

Integrated Sensors

Silicon Substrate

Micromachined Diplexer

Advanced Micro-machined Communications System

MEMS micro-gyro

Design, Integration, Fabrication and Test

Power Management & Distribution

Thin film micro-transformers

Embedded passive components

Sample Pilot Project 1:

Integrated Bio-Molecular Sensor

Sample Pilot Project 2:

Mission to the Human Body

Sample Pilot Project 3: Information Synthesis and Visualization

Airborne Visible InfraRed Imaging Spectrometer

NASA

Distributed In-Situ Science (Mars, etc.)
Integrated Vehicle Health Management
Astronaut screening
Tools for very large dimension data sets

Tools for comprehensive molecular analysis

Patient specific clinical applications

Ultra dimensional data

Comprehensive Molecular Analysis

Infrastructure for Bio-Molecular Engineering

- Carbon Nano Tube Sensors and Devices
 - Nano mechanical structures and devices (Ref. Prof. Charles Lieber, Harvard)
 - Non-lithographic methods of fabrication (Ref. Prof. J. M. Xu, University of Toronto).
- Molecular Systems Engineering
 - "Biology is the best system architect at the molecular level", M. Heller, CTO, Nanogen
- Biomimetic Materials and Systems
 - Molecular self assembly and self organization
- Infrastructure
 - Needs to integrate nano device fabrication processes at the quantum level and molecular engineering at the system level.

Plant Chloroplast

JPL/CISM/Bio-Comp/NCI/BioTechShort..ppt

Bio Technology Benefits to NASA

Winiaturized biochemical analytic laboratories

Fabrication of ultra rugged materials

Biomimetic systems for Earth and Deep Space Robotic exploration

Bio-Astronautics and Human

